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ABSTRACT 

This paper reviews t h e  symmetrizabili ty of systems of conservat ion 

l a w s  which possess  entropy functions.  

t i o n  form f o r  t h e  equat ions of gas dynamics are presented.  

Symmetric formulat ions i n  conserva- 
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Introduction 

In this paper we consider systems of conservation laws which possess 

an entropy function. 

in a symmetric form which retains the conservation properties of the system. 

Among the researchers who have investigated this class of equations are 

Godunov [Z], Friedrichs and Lax [ 3 ] ,  and more recently Mock [ 6 ]  and Harten 

and Lax [4]. 

Such equations of mathematical physics can be written 

The symmetrizability of systems of conservation laws with entropy may 

and should be utilized in the design and analysis of numerical solutions 

to such problems. 

the equations in a way which preserves the hyperbolicity and conservation 

properties (see Roe [ 7 ] ,  [ 8 ] ,  the next section and [ 5 ] ) .  Another example is 

the use of the symmetrizibility property to rigorously analyze splitting 

algorithms for the Navier-Stokes equations by Abarbanel and Gottlieb (see [l]). 

Of particular interest is the possibility of improving the structure of 

iteration matrices in direct Newton-iteration methods to the solution of the 

steady state eqiations. 

For example it offers the possibility to locally linearize 

The goal of this paper is to review the general structure of systems of 

conservation laws with entropy, and in particular to present symmetric formu- 

lations of the equations of gas dynamics. Hopefully, this information will 

be of service to the designers of numerical approximation of this important 

class of equations. 

1. Systems of Conservation Laws with Entropy 

In this paper we consider systems of hyperbolic conservation laws of 

the form 

d 
u + f i (u) ,  E u + div f(u) = 0. t (1. la) 

i=l i 

. I  
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i Here u ( x , t )  i s  an m-column vector of unknowns, f (u) is a vec tor  valued 

func t ion  of m components, x = (xl , . . . ,xd),  f = ( f  1 ,..., f d ). W e  can 

w r i t e  (1.la) i n  t h e  matrix form 

(1. l b )  
d 

i= 1 
u + Ai(u)ux = 0,  

i t 

where 

A i (u) = f u .  i (1. I C )  

(1.1) is  c a l l e d  hyperbol ic  i f  the mat r ix  

has  real eigenvalues  and a complete set of e igenvec tors  f o r  a l l  real ai. 

A scalar func t ion  U(u> is an entropy func t ion  f o r  (1.1) i f :  

i) U s a t i s f i e s  

i= l ,  ..., d i -  i 
UUfU - FU Y 

i where F (u) is  some scalar funct ion c a l l e d  entropy flux i n  t h e  x -d i r ec t ion .  i 

i i )  U is  a convex func t ion  of u. 

It fol lows from (1.3), u p o n m u l t i p l i c a t i o n  of (1 . la )  by Uu, t h a t  every 

smooth s o l u t i o n  of (1.1) a l s o  s a t i s f i e s  

(1.4) 

where 

d .  

Ut + F: 5 Ut + d i v  F = 0, 
i=1 i 

1 d F = (F ,..., F ). 



A system of equat ions 

d 
Pvt + Bivx = 0, 

i= 1 i 

i s  c a l l e d  symmetric hyperbolic i f  P and a l l  Bi are symmetric matrices, 

and i f  P i s  p o s i t i v e  d e f i n i t e .  

The symmetrization of (1.1) w i l l  be accomplished by introducing new 

dependent v a r i a b i s s  v i n  p l ace  of u by s e t t i n g  u = u(v) ,  i .e.,  

d d 

i=1 
(1.6a) 

Thus (1.1) becones of form (1.5) with 

(1.6b) 

The symmetry of t h e  matrices uv and f: implies  t h a t  u and fi are 

g r a d i e n t s  w i th  r e spec t  t o  v, i . e . , t he re  e x i s t  scalar func t ions  q ( v ) y  r (v) 
i 

such that 

(1.7a) 

(1.7b) 

T q / u  Y 

ri V = (fiITy 

where s u p e r s c r i p t  T denotes transpose. 

is  equ iva len t  t o  t h e  convexity of q(v). 

The p o s i t i v e  d e f i n i t e n e s s  of uv 

i s  Note t h a t  t h e  convexity of q imp l i e s  t h a t  t h e  mapping v -t qv 

one-to-one, so  t h a t  (1.7a) can be inve r t ed ,  i .e.,  v can be regarded as a 

func t ion  of u. 
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Theorem 1.1 (Godunov). Suppose (1.1) can be symmetrized by introducing 

new va r i ab le s  v, i .e. ,  (1.7) holds,  where 4 is  a convex func t ion  of v. 

Then (1.1) h a s  an entropy func t ion  U(u) given by 

T 
(1.8a) U(u) = u v - q(v),  

with entropy f l u x e s  Fi(u) 

i i (1.8b) F (u) = (filTv - r (v) .  

Proof: D i f f e r e n t i a t e  (1.8a) with r e spec t  t o  u; using (1.7a) w e  g e t  

T T uu = vT + u vu - gvvu = v . 

S i m i l a r l y  from (1.8b) and (1.7b) w e  g e t  

(1.10) i T i  i T  i T i  FU = v f U  + (f ) vu - r v = v fu .  v u  

Re la t ion  (1.3) follows . 
To prove t h e  convexity of U, w e  show t h a t  U is  t h e  Legendre t r ans -  

form of q: 

(1.11) T ~ ( u )  = m a x  [u v - q ( v ) l .  
V 

For, by the convexity of q, t h e  r i g h t  s i d e  has a unique maximum; a t  t h e  

m a x i m u m  point t h e  v d e r i v a t i v e  must vanish; t h i s  g ives  r e l a t i o n  (1.7a). 

This  proves t h a t  (1.11) is  t h e  same as (1.8a). (1.11) r e p r e s e n t s  U as 

t h e  maximum of l i n e a r  func t ions ;  t h i s  proves t h a t  U i s  convex. 

c 



-5- 

Conversely: 

Theorem 1 . 2  (Mock) . Suppose ~ ( u )  i s  an entropy func t ion  f o r  ( l . l ) ,  

then 

(1.12) vT = uu, 

symmetrizes (1.1). 

Proof:  The convexity of U implies t h a t  t h e  mapping u -+ Uu is 

one-to-one, hence (1.12) def ines  u as a func t ion  of v. W e  de f ine  now 

q and r by 
i 

(1.13a) T 
q(v) = v u - U(u), 

i T i  i (1.13b) r (v) = v f - F ( u ) ,  

where Fi are t h e  entropy f luxes.  D i f f e r e n t i a t i n g  (1.13a) wi th  respect 

t o  v ,  and using (1.12) g ives  

These formulas show t h a t  (1.7a) and (1.7b) hold; t h e r e f o r e  uv and f v  are 

symmetric. To show t h a t  uv i s  p o s i t i v e  w e  have t o  v e r i f y  t h a t  q i s  con- 

vex. This  can be done, as before,  by observing t h a t ,  because of t h e  con- 

v e x i t y  of U ,  it fol lows from (1.13a) and (1.12) t h a t  q is t h e  Legendre 

t ransform of U. 

(For more d e t a i l s  see [41.) 

We no te  t h e  fol lowing r e l a t i o n s :  

i) The symmetric p o s i t i v e  d e f i n i t e  mat r ix  uv simultaneously symmetrizes 

a l l  Ai = f s  from t h e  r i g h t ,  i . e . ,  
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(1.14a) ~~u~ = B~ = symmetric on all i. 

ii) The symmetric positive definite matrix v simultaneously 
U 

symmetrizes a l l  Ai from the left. 

i v = v U ~  vu = symmetric. 
U 

(1.14b) 

iii) The similarity transformation 

i simultaneously transforms all A i n t o  symmetric matrices. 

We say that the system (1.1) can be linearized in the sense of Roe if 

f o r  all u1 and u2 

i i i (1.15a) f (u,) - f (u,) = A (u,,u,) (u2 - ul), i= 1,. . . ,d  , 

A i (u,u) E f i (u) A i (u), U 
(1.15b) 

and the matrix 

has real eigenvalues and a complete set of eigenvectors for all real 

(see [ 7 ]  and [ 8 ] ) .  

wi 

Theorem 1.3 (Harten-Lax). Suppose (1.1) has an entropy function, then 

(1.1) can be linearized in the sense of Roe. 

T Proof. Let v = Uu, then by Theorem 1.2 the mapping u + v is one-to-one, 

vu is a symmetric positive definite matrix and fv are symmetric. Let 

v1 = v(u,), v2 = v(u,) 

i 

and define 
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then 

1 

0 b 

Denote 

(1.16a) 

then 

i where B (ul,u2) is symmetric. 

Now l e t  

then 

0 0 

Denote 

then 

(1.17b) v2 - v1 = P(U1’U2) (u2 - ul> 9 

where P(u1,u2) is  symmetric p o s i t i v e  d e f i n i t e .  Combining (1.16b) and 

(1.17b) w e  g e t  
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(1.18a) 

where 

i i  C = w A (u,,u,) E 
i= 1 

Then 

= symmetric. 

Thus C is similar to a symmetric matrix and therefore has real eigenvalues 

and a complete set of eigenvectors for all real wi. 

2. Euler Equations of Gas Dynamics 

In this section we consider the Euler equations for polytropic gas 

in conservation form: 

(2.  la) t 

where 
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(2. 1b) [fX(u)IT = uY2 (u:u2, (y - ~ ) u ~ [ u ~ u ~  - 3 u:] + u ~ u ~ ,  u1u2u3, 

uz.[Iyu1u4 -y-l 2 (u;+u:)]). 

(2 . lc )  [fY(U)JT = u;z(u~u3,u1uzu3, (y-l)u1[u1u4- - *u;] - + y U1U$ 
\ 

U3[YU1U4 - 9 (u; + u;)]) 

where p is t h e  dens i ty ,  E t h e  t o t a l  energy, m and n are t h e  momentum i n  

t h e  x-d i rec t ion  and t h e  y-direction, r e spec t ive ly .  

The Jacobian matrix A" = ft 

(2.2a) 

r 3 
-ul 0 

(3-Y) u2 + (l-Y) 2 [ -  2 2 ~ 3 ]  u i  

-3 
-ul 

u u u  1 2 3  
2 

-'1u3 
2 

- Y U 2  
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has eigenvalues 

- 
1 -U 

X -1 (2.2b) a; = uy1[u2- [~(y-l)] * = a; = u1 u2; 

The Jacobian matrix Ay = fy 
U 

(2.3a) 

3- 
u1 (2 

0 

u u u  1 2 3  

' 2 1- - u  +- 3 2  

has eigenvalues 

ay 4 = U 4 U 3 +  [Y(Y-lq!J [up4 - t ( u i +  u:;ih 1 . 
It  follows from (2 .1)  that 

(2.4a) 
-y-1 

s = 1 0 g p  P-Y] = log p- Y-1 [y4 - &(u;+ 1 , 
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where 

I .  

(2.4b) P = (Y-l)u;1[u4u1 - f(u2 + u3) 'I 
is the pressure, satisfies 

dS 
1 dt u p t  + u s + u s = 0, 2 x  3 y  u - =  

for all smooth u(x,t). 

Consequently 

dS (2.5a) U1h(SIt i- u2h(S)x + u3h(S)y = ulL(S) - dt = 0 

for all differentiable functions h ( S ) .  Here denotes derivative with 

respect to S. 

Multiplying the continuity equation in (2.1) 

(2.5b) 

by 

(2.1). 

(2.6a) 

Her e 

(2.6b) 

vT z 

(2.7) 

u + u  + u  -0, It lx 3y 

and subtracting (2.5a) we obain the entropy equation (1.4) for 

L 

in (1.12) becomes 

U(u> = -ulh(S), Fx(u) = -u,h(S), Fy(u) = -u3h(S). 

vT = -(y-l) 
p (u4+5 (!$ - Y -1) ,-u*,-u3,u1 - 1 i (S) 

i I 
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2 
(2.8a) v U = (y) U 1 l h S )  

2 1  
* Y  

I 
(1-R)-c (-- R) 

i 
1 - R  

Here P is t h e  pressure (2.4b), c2 = P/ul, q1 = q U 1 ’  42 = u 3 /u 2 Y - 1  2 2 2  .. 
and q = q1 + q2; R = h ( S ) / t ( S ) .  

W e  show now t h a t  t h e  symmetric matr ix  D is  p o s i t i v e  d e f i n i t e  i f  and only 

if 

(2.8b) 1 .. 
R = h ( S ) / t ( S )  < 7 . 

W e  do so by showing t h a t  t h e  determinants of t he  major blocks of D are p o s i t i v e  

if and only i f  (2.8b) holds. 



-13- 

M33 = d e t  

(2.9b) 

M22 = d e t  

D U 
11 12 13 D 

D21 D22 D23 

D31 D32 D33 

D12 D22 1 

8 
c* 

(2.9d) M44 = det(D) = 7 Y ( y - l ) ( l - R y )  > 0. 

W e  consider  now h(S) of t h e  form 
1 - 

(2. loa) 

S - .. 1 
I n  t h i s  case 

(2.8) t h a t  vu 

i ( S )  = - e'?; 
'? R = h ( S ) / i ( S )  = - a+y . It follows from 

is  p o s i t i v e  d e f i n i t e  i f  and only  i f  

a > 0, K > 0. (2. lob)  

We n o t e  t h a t  det(vu) = 0 i f  and only if c1 = 0. 

S u b s t i t u t i n g  (2.10a) wi th  K = fo r  h(S) i n  (2.7) w e  g e t  
Y - 1  

1 P 
- 

T '+Y u + - ( a - l ) ,  -u2,-u3,u1 - (2.11) v = -P --( 1 4 y-1 
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w E -v, 

Denote: 

(2.12a) 

(2.12b) 

then u(v) is given by 

(2.13a) 

(2.13b) 

( 2 . 1 3 ~ )  

(2.13d) 

P = y-l ci [W1w4-t(w2+w3) ‘1 , 

y*-2 1-a-y 
u1 = p = w4 Y - 1  1-1 Y - 1  ’ 

u2/u1 = q1 = -w /w 

u3/u1 = q2 = -w /w 

2 4’ 

3 4’ 

2 -2 
(Y - 1 )  [u1u4- t(U2+u;)]/ul = p = w 41-Ip 

We turn  now t o  express  t h e  f l u x e s  f x  and f y  i n  (2.1) i n  terms of 

t h e  dependent v a r i a b l e  v. 

p(v) is  given i n  (2.13a). We observe t h a t  t h e  f l u x e s  fx(v)  and fy(v)  are 

homogeneous func t ions  of  v of degree 

(2.15) degree = - 5% . 
Y-1 

We denote 

(2.16) kl = ( l - a - y ) / c i ;  



~ 

X 
W 

is The Jacobian f; = -€  

-1 -3 . (2.17a) f; = -pu w4 

-15- 

3 
1 2 4  -k w w 2 

1 2 3 4  k w w w  

2 
k2u (w2 + v >  

2 + w w  ( k w  1 4  1 2 - 1  

w2(k w2 - U> 4 1 2  
2 

-W w (k  w 3 4 1 2 - 1  

2 
1 2 3 4  k w w w  -w3w4 (kiwi - U) 

2 
k2U (w2 + PI 

2 + w w (k w -p) 1 4  1 2  

S imi l a r ly  the Jacobian 

(2.17b) 

fz = -fy is 

4 

W 

-1 -3 . fY = -pp w 
V 

3 
1 3 4  -k w w 2 

1 2 3 4  k w w w  

2 
1 2 3 4  k w w w  

k2U (w3 2 + 11) 

+ w w  ( k w  2 
1 4  1 3-11) 

-w3w4 Fk2 + 
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-3 (2.19b) f z  = -pw4 

Y The homogeneity proper ty  (2.15) of fx(v)  and f (v) implies  

fyv  = - a+v fY(V). a x  
y-l f (VI ; V Y -1 (2.18) fZV = - 

Thus f o r  a = 1 - 2y we have - = 1 and (2.18) implies  t h a t  

f? = fx (v ) ,  f z v  = fy (v ) .  This property may be used i n  cons t ruc t ing  upwind 

d i f fe renc ing  schemes ( see  [9]  and [ S I ) .  W e  remark t h a t  ~1 = 1 - 2 y  < 0 and 

t h e r e f o r e  vu is  not  p o s i t i v e  d e f i n i t e ;  however t h e  mapping u + v is  

one-to-one. 

Y-1  

W e  note  t h a t  f o r  ci = 1 - 2 y  < 0 w e  have kl = 0 i n  (2.16) which 

r e s u l t s  i n  a g r e a t  s i m p l i f i c a t i o n  i n  (2.17) 

c 

0 

0 

2 
-w4 

-3 
(2.19a) f: = - PW4 

0 

0 

I 

0 

w w  3 4  

w2w4 

k2W2W3 

k w w  - k w 2 w  2 2 3  2 2[ 1 

k w w  w2w4 2 2 3  

2 
3w3w4 k2  (w3 + -wlw4 

Here k2 = -1 -y . 
Y-1 



For a E Y > 0 w e  have 

(2.20a) 

-1 -2 fX = -pp w4 
V 

(2.20b) 

-1 -2 €Y = -pu w4 
V 

2 
1 2 4  -k w w 

2 
w4(klw2 - 11) 

k w w w  1 2 3 4  

k2 = 0 i n  (2.16); thus (2.17) becomes 

w (k w 2 -  1-11 1 1 2  -W (k ~ ~ - 1 - 1 1  -w2 (klw: - 3U) 3 1 2  

k w w w  2 
-w 3 (k 1 2  ~ ~ - 1 - 1 )  -w2(klw3-p) 1 1 2 3  

2 -k w W, 
i i L  

2 r - k w w  

I --1v'3--4 
k 1"2"3"4 

L 

2 k w w w  -W (k w - p )  1 1 2 3  2 1 3  

2 
-w 3 (k 1 3  w2 - 3p) wl(klw3 - u) 

9 3 
-k W ~ W  Wl(klw; - u)  1 1 3  

Here kl = l/Y-2. 

3. Viscos i ty  T e r m s  

I n  t h i s  s e c t i o n  we  consider the  v i s c o s i t y  terms i n  the  compressible 

Navier-Stokes equat ions 

( 3  9 1) 

where 

(3.2a) 

Y 



T 
(3.2b) [Qyl = (,,P (qly + (q lX+ q2y)  + 21-lq2y ’ 1Jq1(92x + q1y) 

as before  q1 = u2/u1 and q2 = u3/u1 a r e  the  ve loc i ty  components i n  

t he  x and y d i r e c t i o n s ,  respec t ive ly .  

Expressing q and q2 as a funct ion of v i n  (2.11)  we get  1 

92 = -v l v  91 = -v /v  2 4’ 3 4’ 

and 

qly = v4 -2 (-v v + v  v = v i *  (-vuv3y + v3v4y) . (3.3b) 4 2y 2 4y);  q2y 

i = 1 , 2  i n  (3.2) by (3.3) w e  rewrite (3.2) as ix’ qiy  ’ Subs t i tu t ing  q 

(3.4a) 

(3.4b) 

where 

(3.5a) 

Y’ 
Qx = Rxx(v)vx + Rxy(v)v 

Qy = Ryy(v)v + Ryx(v)vx, 
Y 

0 ( A +  2p)v2v4 pv3v4 -(A + 2p)v2, - llv; 1 1 



-3 (3.6a) Rxy(v) = v4 

-3 
(3.6b) Ryx(v) = v4 

0 

0 

0 

0 

0 

0 

0 

0 
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1 

0 

2 -uv4 

0 

pv2v4 

0 

0 

2 
-uv4 

pv3v4 

0 

0 

2 
-Av4 

Av3v4 

0 

0 

0 

pv2v4 

0 

-AV4 2 

0 

Av2v4 

0 

2 
-PV4 

0 

pv2v4 

0 

pv3v4 

Av v 

- ( A + p ) v  v 

2 4  

3 4. 

J 

9 

We observe that R"" and Rw are symmetric nonnegative matrices (note that 

v4 < 0 by definition). R" and Ryx are not symmetric, except in the non- 

physical case X = p; however RV + Ryx is symmetric, in agreement with [l] . 
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